Global existence of solutions to a singular parabolic/Hamilton-Jacobi coupled system with Dirichlet conditions
نویسندگان
چکیده
We study the existence of (distribution/viscosity) solutions of a singular parabolic/Hamilton-Jacobi coupled system. Our motivation stems from the study of the dynamics of dislocation densities in a crystal of finite size. The method of the proof consists in considering a parabolic regularization of the system, and then passing to the limit after obtaining some uniform bounds using in particular an entropy estimate for the densities. To cite this article: A. Names, C. R. Acad. Sci. Paris, Ser. I ••• (••••). Résumé Existence globale de solutions pour un système couplé parabolique/Hamilton-Jacobi singulier avec condition de Dirichlet. Nous étudions l’existence de solutions mixtes (distribution/viscosité) pour un système couplé parabolique/Hamilton-Jacobi posé sur un interval. Notre motivation vient de l’étude de la dynamique de densités de dislocations dans un cristal de taille finie. L’idée de la preuve consiste à considérer une régularisation parabolique appropriée, et ensuite à passer à la limite en utilisant en particulier une estimation entropique pour les densités. Pour citer cet article : A. Names, C. R. Acad. Sci. Paris, Ser. I ••• (••••). 1. Version française abrégée Pour tout temps T > 0, et l’interval spatial I = (−1, 1), nous étudions le système parabolique/HamiltonJacobi suivant :
منابع مشابه
Dynamics of dislocation densities in a bounded channel. Part II: existence of weak solutions to a singular Hamilton-Jacobi/parabolic strongly coupled system
We study a strongly coupled system consisting of a parabolic equation and a singular Hamilton-Jacobi equation in one space dimension. This system describes the dynamics of dislocation densities in a material submitted to an exterior applied stress. Our system is a natural extension of that studied in [15] where the applied stress was set to be zero. The equations are written on a bounded interv...
متن کاملExistence and uniqueness for a nonlinear parabolic/Hamilton-Jacobi coupled system describing the dynamics of dislocation densities
We study a mathematical model describing the dynamics of dislocation densities in crystals. This model is expressed as a 1D system of a parabolic equation and a first order Hamilton-Jacobi equation that are coupled together. We examine an associated Dirichlet boundary value problem. We prove the existence and uniqueness of a viscosity solution among those assuming a lower-bound on their gradien...
متن کاملA 2-D free boundary problem with onset of a phase and singular elliptic boundary value problems
Numerous models of industrial processes, such as diffusion in glassy polymers or solidification phenomena, lead to general one phase free boundary value problemswith phase onset. The classicalwell-posedness of a fast diffusion approximation to the concerned free boundary value problems is proved. The analysis is performed via a singular change of variables leading to a singular system in a fixe...
متن کاملGlobal Continuation beyond Singularities on the Boundary for a Degenerate Diffusive Hamilton-Jacobi Equation
In this article, we are interested in the Dirichlet problem for parabolic viscous Hamilton-Jacobi Equations. It is well-known that the gradient of the solution may blow up in finite time on the boundary of the domain, preventing a classical extension of the solution past this singularity. This behavior comes from the fact that one cannot prescribe the Dirichlet boundary condition for all time a...
متن کاملDynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system
We study a coupled system of two parabolic equations in one space dimension. This system is singular because of the presence of one term with the inverse of the gradient of the solution. Our system describes an approximate model of the dynamics of dislocation densities in a bounded channel submitted to an exterior applied stress. The system of equations is written on a bounded interval with Dir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008